Chapter 31 Matrix Operations

obtained from A by permuting its columns. Prove that the product of
two permutation matrices is a permutation matrix. Prove that if P is a
permutation matrix, then P is invertible, its inverse is PT, and PT is a
permutation matrix.

31.1-3
Prove that (4B)T = BTAT and that AT 4 is always a symmetric matrix.

31.1-4
Prove that if B and C are inverses of A4, then B = C.

31.1-5

Let 4 and B be n x n matrices such that AB = I. Prove that if 4’ is
obtained from A by adding row j into row /, then the inverse B’ of 4’ can
be obtained by subtracting column / from column j of B.

31.1-6
Let A4 be a nonsingular # x n matrix with complex entries. Show that every
entry of A~! is real if and only if every entry of A is real.

3L1-7

Show that if 4 is a nonsingular symmetric matrix, then A~! is symmet-
ric. Show that if B is an arbitrary (compatible) matrix, then BABT is
symmetric. -

31.1-8

Show that a matrix A has full column rank if and only if Ax = 0 implies
x = 0. (Hint: Express the linear dependence of one column on the others
as a matrix-vector equation.)

31.1-9
Prove that for any two compatible matrices 4 and B,

rank(A4B) < min(rank(A4), rank(B)) ,

where equality holds if either 4 or B is a nonsingular square matrix. (Hint:
Use the alternate definition of the rank of a matrix.)

31.1-10
Given numbers xg,X; ., X,—1, prove that the determinant of the Vander-
monde matrix
X0 x} x3!
2 n—1
Xy X X
V(X(),X[, yxn-l)= . ! !
Xn— x'l:_ . '|l

is
det(V(XO’xh v’xﬂ—l')) = H (xk —xj)
0<j<k<n—~

g

ki)

L

=
b

31.2 Strassen’s algorithm for matrix multiplication 73

(Hint: Multiply column i by —x¢ and add it to column i + for i =
n—-1,n-2,...,1, and then use induction.)

31.2 Strassen’s algorithm for matrix multiplication

This section presents Strassen’s remarkable recursive algorithm for muiti-
plying n x n matrices that runs in ©(n'87) = O(n>8!) time. For sufficiently
large n, therefore, it outperforms the naive ©(rn®) matrix-multiplication
algorithm MATRIX-MULTIPLY from Section 26.1.

An overview of the algorithm

Strassen’s algorithm can be viewed as an application of a familiar design
technique: divide and conquer. Suppose we wish to compute the product
C = AB, where each of 4, B, and C are n x n matrices. Assuming that n
is an exact power of 2, we divide each of 4, B, and C into four n/2x n/2
matrices, rewriting the equation C = 4B as follows:

(: i)=(‘§ 3)(; i)‘ (31.9)

{Exercise 31.2-2 deals with the situation in which » is not an exact power
of 2.) For convenience, the submatrices of 4 are labeled alphabeticaily
from left to right, whereas those of B are labeled from top to bottom,
in agreement with the way matrix multiplication is performed. Equa-
tion (31.9) corresponds to the four equations

r = ae+bf, (31.10)
s = ag+bh, (31.11)
t = ce+df, (31.12)
u =-"cg+dh. (31.13)

Each of these four equations specifies two multiplications of n/2 x n/2
matrices and the addition of their n/2 x n/2 products. Using these equa-
tions to define a straightforward divide-and-conquer strategy, we derive
the following recurrence for the time 7'(n) to multiply two n x n matrices:

T(n) =8T(n/2) +O(n?) . (31.14)

Unfortunately, recurrence (31.14) has the solution 7(n) = ©(n3), and thus
this method is no faster than the ordinary one.

Strassen discovered a different recursive approach that requires only 7
recursive multiplications of 7/2 x n/2 matrices and 6(n?) scalar additions
and subtractions, yielding the recurrence

T(n) = 7T(n/2)+6(n?) (31.15)

Chapter 31 Matrix Operations

e(nlg7)

o(n>?y .

Strassen’s method has four steps:

1. Divide the input matrices 4 and B into n/2 x n/2 submatrices, as in
equation (31.9).

2. Using ©(n?) scalar additions and subtractions, compute 14 n/2 x n/2
matrices A4y, By, 42, B3,..., Ay, By,

3. Recursively compute the seven matrix products P; = A4;B; for i =
L2,...,7.

4. Compute the desired submatrices r,s,2 4 of the result matrix C by
adding and,/or subtracting various combinations of the P; matrices, us-
ing only ©(n?) scalar additions and subtractions.

Such a procedure satisfies the recurrence (31.15). All that we have to do

now is fill in the missing details.

Determining the submatrix products

It is not clear exactly how Strassen discovered the submatrix products
that are the key to making his algorithm work. Here, we reconstruct one

plausible discovery method.
Let us guess that each matrix product P; can be written in the form

P = AB;

(ai@ + ainb + ajc + aud) - (Bue + Baf + Bisg + Buh) , (31.16)
where the coefficients a;;, B;; are all drawn from the set {-1,0,1}. That
is, we guess that each product is computed by adding or subtracting some
of the submatrices of A, adding or subtracting some of the submatrices
of B, and then multiplying the two results together. While more general
strategies are possible, this simple one turns out to work.

If we form all of our products in this manner, then we can use this
method recursively without assuming commutativity of muitiplication,
since each product has all of the A submatrices on the left and ail of
the B submatrices on the right. This property is essential for the recursive
application of this method, since matrix multiplication is not commuta-
tive.

For convenience, we shall use 4 x 4 matrices to represent linear com-
binations of products of submatrices, where each product combines one
submatrix of 4 with one submatrix of B as in equation (31.16). For ex-
ample, we can rewrite equation (31.10) as

r = ae+bf
+1 0 0 0 e
0 +1 0 0 f
a b ¢ d 0 00 0

31.2 Strassen’s algorithm for matrix multiplication 741

e f g h
+

a
b
[
. - -,
The last expression uses an abbreviated notation in which “#” represents
+1, “.” represents 0, and “-” represents —1. (From here on, we omit

the row and column labels.) Using this notation, we have the following
equations for the other submatrices of the result matrix C:

s = ag+bh
+
t = ce+df
= . .
-+
u = cg+dh

I

We begin our search for a faster matrix-multiplication algorithm by ob-
serving that the submatrix s can be computed as s = P, + P, where P,
and P; are computed using one matrix multiplication each:

P = AB
= a-(g-h)
= ag-ah

P, = AyB,
= (a+b)-h
= ah+bh

b

Chapler 31 Matrix Operations q -3 21,2 Strassen’'s algorishm for mareix multipficarion 743

The matrix ¢ can be computed in 4 similar manner as ¢ = f + Fy, where b By adding an additional produect
P o= Al { Py = dehy
= [¢+d} e ’ = (b=d}i(f+H)
= g¢+do = bf+bh—df —dh

= * +
- " =
+ - T R
and b 4 however, we abtain
Py o= Ay Fr' = PA+P-F+F
= g-[f=g) —: agwhil
= df —de f

- +
We can abtzin w in 2 similar manner from P by using A and P4 1o

Let us define an essenéal term to be one of the sight terms appearing on maove the inessential terms of P in a different direction:

the nght-hand side of one af the equations {31.19)-(31.13), We have now

used 4 products to compute the two submatrices ¢ and ¢ whose ecssential Ps+ P =P = agedag-cé+dl
terms dare ag, &A, co, and &, Note that £, computes the essential ierm ag, - +
P computes the essential tecm Ak, P computes the essential term e, and _
Py computes the cssential term o, Thus, it remains for us o compute the oy
i

remaiming 1wo submatrices r and «, whose essential terms are the diagonal
terms ae, £, o, and dh, without using mote than 3 additional products,
We now try the innovation Fs in order 1o compute wo essential terms at
once;

Py = s8s

= [@+d)-le+H)

By subtracting an additional product

Py = A:B,

= {g-c¢)-{&+g)

e +ag—oe —of
+ -+
= ge+ah+de+dh
C+ R

+ - - weg now obialn
In addinon 10 computing both of the essential terms ae and of, s com- it = FB+P=-P=F
putes 1the inessential terms afr and d+, which need 1o be cancelled some- = cF + i
how. We can use F and M 10 cancel them, but two other inessential 1erms p
then appear;
PisPi—fy = gosdhad!—bh B +

" +
= = The 7 submatrix products M, P, 5 can thus be used 1o compuie the

product = AH, which completes the description of Strassen’s method,

744

Chamier 31 Matrix Operations

Discussion

The large constant hidden in the running time of Strassen’s algorithm
makes 1t impractical unless the matrices are lame (v ot least 45 or s0)
and dense {few zero entres). For small matrices, the straightforward algo-
rithm 15 preferable, and for large, sparse matrices, there are special sparse-
matrix algonthms that beat Strassen’s in practice. Thus, Strassen’s method
is largely of theoretical interest.

By wusing advanced technigues bevond the scope of this text, one can in
fact multiply # = n matrices in better than &(n*®7) 1ime. The current best
upper bound is approximately Na®?7%), The best lower hoend known
is just the obvious Q{n") bound |obvious because we have to fill in n?
elements of the product matrix). Thus, we currently do not know how
hard matrix multiplication really is.

Strossen's algorithm does not require that the matrix entries be real num-
bers: All that matters is that the number svsiem form an algebraic ring,
[f the matrix entries do not form a nng, however, sometimes other tech-
niques can be brought to bear to allow his method 1o apply, These issues
are discussed more fully in the next section.

Exercises

31.2-1
Use Strassen’s algorithm to compute the matrix product

B | 5 4
5 7 B 2T
Show vour work,

31.2-2

How would vou modify Strassen’s algornthm to multiply # = 7 matnces
in which 1 is not an exact power of 27 Show that the resulting algorithm
runs in time S{nE7),

il1.2-3

What is the largest & such that if vou can maltiply 3 = 3 matrices using &
multiplications (not assuming commutativity of multiplication), then vou
can multiply # = & matrices in ime o{a®7)? What would the running time
of this algonthm be?

31.2-4

V. Pan has discovered a way of multiplying 68 = 68 mairices using 132,464
multiplications, a way of multiplving 70 = 70 matrices using 143,640 mul-
uplications, and a way of multiplying 72 = 72 matrices using 155,424 mul-

tiplicgtions. Which method vields the best asympiotic running time when %

3.3 lgebraic number spstems and boclean mairiy smdtiplicarion 745

used in a divide-and-conguer matrix-multiplication algorithm? Compare
it with the running tme For Strassen’s algorithm,

31.2-5

How quickly can you multiply a ks = i matrix by an a = &n matrix, using
Strassen's algorithm as a subroutine? Answer the same question with the
order of the input matrices reversed.

J12-6

Show how to multiply the complex numbers g + b and ¢ + di using only
three real multiplications, The algorithm should 1ake a, b, ¢, and o as input
and produce the real component ac — &¢ and the imaginary component
ad + be separately.

* 31.3 Algebraic number systems and boolean matrix multiplication

The properties of matrix addition and multiplication depend on the prop-
erties of the underlying number system. In this section, we define three
different kinds of underlying number systems: quasirings, rings, and fields.
We can defing matrix multiplication aver quasirings, and Strassen’s matrix-
multiplication algorithm works over rings. We then present a simple trick
for reducing boolean matrix multiplication, which is defined over a gua-
siring that is not & rfng, 10 multiplication over & ring, Finally, we discuss
why the properties of a field cannot naturally be exploited to provide better
algorithms for matrix multiplication.

Quasirings

Let (8, @, @, 0, T) denote a number system, where § is 2 set of elements, &
and @ are binary operations on § (the addition and multiplication opera-
11:::115. respectively), and 0 and T are distinct distinguished elements of 5.
This system is o guastring i 1t satisfies the following properties:
L. (5, a:,D) is a monoid:

5 is closed under =; thatis, a = b e 8 forall o, 4 = 5,

@ s assocfative; that is, a@ b @ci=(aablacforall . b, e e 5.

« 0 is an fdenviry for @ thatis, el =0@a=gforalla e 5.

Likewise, (5, @, 1) is 2 meonoid.
{0 is an annifilator, that is, a a0 =0ca=0foralla & 5.
The operator = 15 commutative; that 5. a s b=hb s a for all a. b £ 5.

£

The aperator @ distrrbutes over &; that s, ac(b&cl = @ b)) @ lat ol
and (b&c)ea=(boale(caa) forall a,b.ce &

