138 PROPERTIES OF CONTEXT-FREE LANGUAGE

As |wx| > 0, yw'vx'z cannot equal ywlox'z if i # j. Thus the grammar generates
an infinite number of strings. '

Conversely, suppose the graph has no cycles. Deﬁne‘ the rank of a variable A
to be the length of the longest path in the graph beginning at A. "I’he abseno; of
cycles implies that the rank of A is finite. We also observe that if A+ BC is a
production, then the rank of B and C must be strictly less than the rank of 4,
because for every path from B or C, there is a path of length one grea!er from A.
We show by induction on r that if A4 has rank r, then no terminal string derived
from A has length greater than 2"

Basis r=0. If A has rank 0, then its vertex has no edges ou?. Therefore all
A-productions have terminals on the right, and A derives only strings of length 1.

Induction r > 0. 1f we use a production of the form 4 — a, we may derive only a
string of length 1. If we begin with 4 —+ BC, then as B .and C are of rarrnl(‘r —1lor
less, by the inductive hypothesis, they derive only strings of length 2"~ ' or less.
Thus BC cannot derive a string of length greater than 2".

Since S is of finite rank r,, and in fact, is of rank no greater than the number (?f
variables, S derives strings of length no greater than 2. Thus the language is

O

Example 6.6 Consider the grammar
S—> AB
A-BC|a
B—CC|b
C—oa

whose graph is shown in Fig. 6.7(a). This graph has no cycles. The ranks of S., A, B,
and C are 3, 2, 1, and 0, respectively. For example, the longest path from § is S, A,
B, C. Thus this grammar derives no string of length gr;ater than 23 =8 an.d
therefore generates a finite language. In fact, a longest string generated from § is

S => AB= BCB=> CCCB=> CCCCC % aaaaa.

(a) (h)
Fig. 6.7 Graphs corresponding to CNF grammars.

6.3 DECISION ALGORITHMS FOR CFL'S 139

If we add production C —+ AB, we get the graph of Fig. 6.7(b). This new graph
has several cycles, such as A, B, C, A. Thus we can find a derivation 4 & a3Af,, in
particular A = BC = CCC => CABC, where ay = C and f#, = BC. Since C%a
and BC2 ba, we have A% adba. Then as S% 4b and A2 a, we now have
S d'a(ba)b for every i. Thus the language is infinite.

Membership

Another question we may answer is: Given a CFG G = (V, T, P, S) and string x in
T*, is x in 1(G)? A simple but inefficient algorithm to do so is to convert G to
G =(V, T, P, §), a grammar in Greibach normal form generating I(G) — {c}.
Since the algorithm of Theorem 4.3 tests whether S2 ¢, we need not concern
ourselves with the case x = ¢. Thus assume x # ¢, so x isin I(G’) il and only if x is
in L(G). Now, as every production of a GNF grammar adds exactly one terminal
to the string being generated, we know that if x has a derivation in G', it has one
with exactly | x| steps. If no variable of G’ has more than k productions, then there
are at most k'™ leftmost derivations of strings of length |x|. We may try them all
systematically.

However, the above algorithm can take time which is exponential in |V|
There are several algorithms known that take time proportional to the cube of
|x| or even a little less. The bibliographic notes discuss some of these. We shall
here present a simple cubic time algorithm known as the Cocke-Younger-Kasami
or CYK algorithm. It is based on the dynamic programming technique discussed
in the solution to Exercise 3.23. Given x of length n > 1, and a grammar G, which
we may assume is in Chomsky normal form, determine for each i and j and for
each variable A, whether A% x,;, where x;; is the substring of x of length j
beginning at position i.

We proceed by induction on j. For j=1, A% x,; if and only if A - x;isa
production, since x;; is a string of length 1. Proceeding to higher values of j, if
j> 1, then 4 ’:x,., if and only if there is some production A — BC and some k,
I <k < j, such that B derives the first k symbols of x;;and C derives the last j — k
symbols of x;;. That is, B% x;, and C2 x;,, ;_,. Since k and j — k are both less
than j, we already know whether each of the last two derivations exists. We may
thus determine whether A 2 x;;. Finally, when we reach j = n, we may determine
whether S % x,,. But x,, = x, so x is in I{G) if and only if §% x,,.

To state the CYK algorithin precisely, let V,; be the set of variables A4 such
that 42 x,,. Note that we may assume | <i <n — j + 1, for there is no string of
length greater than n — i + | beginning at position i. Then Fig. 6.8 gives the CYK
algorithm formally.

Steps (1) and (2) handle the case j = 1. As the grammar G is fixed, step (2)
takes a constant amount of time. Thus steps (1) and (2) take O(n) time. The nested
for-loops of lines (3) and (4) cause steps (5) through (7) to be executed at most n?
times, since i and j range in their respective for-loops between limits that are at

140 PROPERTIES OF CONTEXT-FREE LANGUAGE:

begin
1) for i:=1to ndo .
2) Viy:={A| A — a is a production and the ith symbol of x is a};
3) for j:=2 to ndo
4) fori:=1ton—j+ 1do
begin
5) Viji= 55
6) for k:=1¢toj— 1do
7) V=V, u {A] A - BC is a production, B is in ¥, and C
isin Viyy s}
end

end

Fip, 6.8, The CYK algorithm.

most n apart. Step (5) takes constant time at each execution, so the aggregate time
spent at step (5) is 0(n?). The for-loop of line (6) causes step (7) to be executed n or
fewer times. Since step (7) takes constant time, steps (6) and (7) together take 0(n)
time. As they are executed 0(n2) times, the total time spent in step (7) is O(n*). Thus
the entire -algorithm is 0(n*).

Example 6.7 Consider the CFG
S— AB|BC
A—BA|a
B—-CC|b
C— AB|a

and the input string baaba. The table of V,/s is shown in Fig. 6.9. Th<? ?op row is
filled in by steps (1) and (2) of the algorithm in Fig. 6.8. That is, for po.smons.l and
4, which are b, we set V,, = V,, = {B}, since B is the only variable which derives b.

Fig. 6.9 Table of Vs,

EXERCISES

Similarly, V,; = V3, = V5, = {A, C}, since only 4 and C have productions with a
on the right.

To compute V; for j > 1, we must execute the for-loop of steps (6) and (7). We
must match V, against V;,, ;_,fork = 1,2, ..., j — 1, seeking variable D in ¥, and
E in V44 ;_, such that DE is the right side of one or more productions. The left
sides of these productions are adjoined to V,,. The pattern in the table which
corresponds to visiting V; and Vi, ;_, for k= 1,2, ..., — 1 in turn is to simul-
taneously move down column i and up the diagonal extending from V; to the
right, as shown in Fig. 6.10.

Fig. 6.10 Traversal pattern for computation of ;.

For example, let us compute V,,, assuming that the top three rows of Fig. 6.9
are filled in. We begin by looking at V,, = {4, C} and V,, = {B}. The possible
right-hand sides in V;, Vy; are AB and CB. Only the first of these is actually a right
side, and it is a right side of two productions S - AB and C — AB. Hence we add §
and C to V,,. Next we consider V,,V,, = {B}{S, A} = {BS, BA}. Only BA is a
right side, so we add the corresponding left side A4 to V,,. Finally, we consider
Va3 Vsy = {B}{A, C} = {BA, BC}. BA and BC are each right sides, with left sides 4
and §, respectively. These are already in V,,, so we have V,, = {5, A, C}. Since S is
a member of V,, the string baaba is in the language generated by the grammar.

EXERCISES

6.1 Show that the following are not context-free languages.
a) {a'bct|i < j < k}

b) {ab!|j = i)

¢) {d']i is a prime}

d) the set of strings of d's, b’s, and ¢’s with an equal number of e
e) {ab"c"|n < m < 2n)

* 62 Which of the following are CFL's?

a) {a'b]i #jand i +2f}

b) (a + b)* — {{a"b")|n = 1}

c) {wwhw|wis in (a + b)*}

d) {b; #b,s 1 |bi is i in binary, i > 1}

