
~
RANDOM ACCESS MACHINES .237

bol (into14).
This

(In rase
;, where
I on the

'I-tuples

Using the same compression technique as in the proof of Theorem 4.1.40, we can prove an
..result for the space compression.

.1.42 (Linear space compression theorem) For any function s(n) > n and any real
Space(s(n)) = Space(es(n)).

Owe

Theorem 4.1.42 allows us to define

.At the:uple
ofng

cells
eMis.
IOuring
.all the
!se two

PSPACE = USpace(nk:

k=O

of alllanguages that can be decided by MTM with a polynomial space bound.

" Random Access Machines

to read a memory far away, all intermediate cells also have to be read.
, is bridged by the random access machine model (RAM), introduced and analysed in
which has turned aut to be a simple but adequate abstraction of sequential computers

,- .AIgorithm design methodologies for RAM and sequential computers are
-, ,- .-

there.L

very efficient simulations between RAM and Turing machines.

1

Basic Model
--, a RAM (see Figure 4.15a) consists of a data memory and a program memory. The

is an infinite random access array of registers Ro,R1,R2, ...each of which can store
The register Ro is called the accumulator, and plays a special role. The program

J : , P2, ...each capable of storing an instruction
the instruction set shown in Figure 4.15b. A control unit (also called ALU, for 'arithmetical

unit') contains two special registers, an address counter AC and an instruction counter IC.
--, there are input and output units.

At the beginning of a computation all data memory and control unit registers are set to O, and
is stored in the program memory. A configuration of a RAM is described by a i-tuple

lm, nim), where i is the content of IC, i1, im are the addresses of the registers used up
." nit is the current content of the register Rit.

The operand of an instruction is of Dne of the following three types:

=1

i
..

1

a constant i;

an address, referring to the register Ri,

an indirect address; referring to the registerRc(R;

i) denotes the contents of the register Ri. (In Figure 4.15 Rop means i, if the operand has the
op means R;, ifthe operand is ofthe form i; Rop stands for Rc(RiJ' ifthe operand has the form *i.)

_r C

238 . COMPUTERS

READ
WRITE
LOAD
STORE
ADD
SUB
MULT
DIV
JUMP
JZERO
JGZERO
HALT
ACCEPT
REJECT

operand
operand

operand

operand

operand
operand

operand

operand
label

label

labe!

while:data
memory~RO R)

R2
R

-l

program
me~

PO~P, P2

P3

~

body:

-§

IjnpuI -Rop!

{Rop -OUlpUI}
IRop ~ Ro}

IRo ~ Rop}

I Ro + Rop ~ R o }

I Ro -R op ~ R o }

{Ro* Rop~Ro}
{Ro I Ro f ~Ro}
I go 10 label
{ jf R o = O, then go to label }

{jf Ro> O,thengololabel }

(a) (b)
output

(a)
Figure 4.15 Random access machine

Figure 4.16

to another. In each computational step a RAM executes the instruction currently contained ;
program register P ci lC). In order to perform a nonjump instruction, its operand is stored in
and through AC the data memory is accessed, if necessary. The READ instruction reads ."

input number; the WRUE instruction writes the next output number. The memory ;
, .'

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

Figure 4.17

stands for t
the algorith
SHIFf oper

If we u~
time step a

complexity
T.,(n) = 0(1

because jus
out is to c(
instruction
one (multiJ
The second
perform an
of all the n\l
needed for

accumulator Ro as Dne of the registers. The second register, if needed, is specified by the contents of
AC. After a nonjump instruction has been performed, the content of IC is increased by 1, and the same
happens if the test in a jump instruction fails. Otherwise, the label of a jump instruction explicit1y
defines the new contents of IC.

A computation of a functionis naturally defined for a RAM. The arguments have to be provided
at the input, and a convention has to be adopted to determine their number. Either their number is
a constant, or the first input integer determines the total number of inputs, or there is some specia1
number denoting the last input.7 Language recognition requires, in addition, an encoding of symbols

by integers.
Figure 4.16 depicts RAM prograrns to compute two functions: (a).f(n) = 22" for n > O; (b) Fn -the

nth Fibonacci number. In both cases n is given as the only input. Fixed symbolic addresses, like N, j,
Fi-l, Fi, aux and temp, are used in Figure 4.16 to make programs more readable. Comrnents in curly
brackets serve the same purpose.

The instruction set of a RAM, presented in Figure 4.15, is typica! but not the only Dne possible. Any
'usual' microcomputer operation could be added. However, in order to get relevant complexity results
in the ana!ysis of RAM prograrns, sometimes only a subset of the instructions listed in Figure 4.15 is
a1lowed -namely, those without multiplication and division. (lt will soon become clear why.) Such
a model is usually called a RAM+. To this new model the instruction SHIFT, with the semantics
Ro ---l Ro /2 J, is sometimes added.

Figure 4.17 shows how a RAM+ with the SHIFT operation can be used to multiply two positive
integers x and y to get z = x. Y using the ordinary school method. In comrnents in Figure 4.17 k

7For example, the number 3 can denote the end of a binary vector.

240 .COMPUTERS

R data
memory

Ro
R)

R2
Co
CI

C2

C3
C4

M G-I

I I I I

C.

Cj+\I

~I"q

Figure 4.18 Simulation of a TM on a RAM

4.19

Exercise 4
simulation

in that register during the program execution plus the length of the address of the register.
logarithmic space complexity of a computation is then the sum of the logarithmic space ' ~-- f_-
of all the registers involved. With respect to these logarithmic complexity measures, the
in Figure 4.16a, forf(n) = 22", has the time complexity T,(n) = 8(2n) and the space
S,(n) = 8(2n), which corresponds to Dur intuition. Similarly, for the complexity of the
in Figure 4.17, to multiply two n-bit integers we get T ,,(n) = 8(n), S,,(n) = 8(1), T,(n) =
S,(n) = 8(n), where the subscript u refers to the uniform and the subscript 1 to the
measures. In the last example, uniform and] ,-
with respect to the length of the input. In the first example the differences are exponential.

4.2.2 Mutual Simulations oí Random Access and Turing Machines

In spite of the fact that random access machines and Turing machines seem to be very
computer models, they can simulate each other efficiently.

The fact

Theorem 4.2.1 A one-tape Turing machine M of time complexity t(n) and space complexity s(n) (

simulated by a RAM+ of uniform time complexity V(t(n)) and space complexity V(s(n)), and with

logarithmic time complexity V(t(n) 19t(n)) and space complexity V(s(n)).

Proof: As mentioned in Section 4.1.3, we can assume without 10ss of generality that
infinite tape. Data memory of a RAM+ í
R1 to store the current state of M and the register R2 to store the current position,
Moreover, the contents of the jth cell of the tape of M will be stored in the register Rj+2' if j ~ o.

n will have a special subprogram for each instruction of M. This subprogram , c

instruction using the registers Ro -R2. During the simulation the instruction LOAD '
addressing, j
of M is finished, the main program is entered, which uses registers R1 and R2
instruction of M is to be simulated as the next Dne. The number of operations which n
simulate Dne instruction of M is clearly constant, and the number .

number of cells used by M by only a factor of 2. This gives the uniform complexity time and
estimations.1 -

the a1phabet of Mis finite. fhis yields the •J(s(n») bound for the 10garithmic space
10garithmic factor for the 10garithmic time complexity 19t(n), comes from the fact that the
representing the head position in the register R2 may be as large as t(n).

.241RANDOM ACCESS MACHINES

input
t_pe .1 1 1..I \

RAM"; ."memo "tlttc. ~..
tape ,

I,output -

tape
,

.1.

.1 1 1

:1tI~*:--t:::

-----;:

.::::::;-

R., AC
tape tape

IC aux.
tape lape

4.19 Simulation of a RAM on a TM

It is easy to see that the same result holds for a simulation of MTM on RAM+ , except that slightly
~-' "- -' -~. -.' -tapes into a sequence of memory registers of a RAM has to be used.

Exercise 4.2.2 Show that the same complexity estimations as in Theorem 4.2.1 can be obtained for the
simulation ofk-tape MTM on RAM+.

The fact that RAM can be efficiently simulated by Turing machines is more surprising.

A RAM+ afuniform timecomplexity t(n) and logarithmic spacecomplexity s(n) ~ t(n) can
--, --in time O(t4(n»- an~ sp~ce ~(s(n)~._~_RAM aflogarlthmic time complexity t(n)

can be
ith the

RAM+ has uniform time complexity t(n) and logarithmic space complexity s(n) ~ t(n),
~ ., .'" ~ .instruction can

Turing-
L RA1'vI+ instruction is proportional to the length of the operands.

We show now how a RAM+ n with logarithmic time complexity t(n) and logarithmic space
,- -a 7-tapeMTMM intime O(t2(n)). Promthis the firststatement

M wiU have a general program to pre-process and post-process aU RAM instructions and a special
-'o .-, -.The first read-only input tape contains the inputs of

from one another by the marker #, Each time a RAM instruction is to be simulated, the
R used by R up to that moment in

###it#C1##i2#C2##i3#... ##ik-l#Ck-1##ik#Ck###,

is a marker; i1,i2, o o o ,ik are addresses of registers used until then, stored in binary form;
.-.Rij' again in binary formo The accumulator tape contains

242 8: COMPUTERS

Definiti.
overhead

if for eve
for an en
needed ~
in additi(
way to c(

Theorel
complexi
overhead

the current contents of the register Ro. The AC tape contains the current contents of AC, and
tape the current value of IC. The output tape is used to write the output of 'R., and the]
auxiliary working tape (see Figure 4.19).

The simulation of a RAM instruction begins with the updating of AC and IC
of M is used to search the second tape for the register 'R. has to work with. If the operand
instructionhas the foml '= r, then the register is the accumulator. li the operand has the fOml 'r,
j is the current contents of AC, and Dne scan through the second tape, together
integers ik with the number j written on the AC tape, is enough either to locate j and cI
tape or to find aut that the register Ri has not been used ret. In the second case,
added at the end of the second tape just before the string ###
'*r, 1
contents of the corresponding register, ci' are written on the auxiliary tape. In the second the register
address ci is found in order to get cci. (In the case j or ci is not found as a register address, we insert
on the second tape a new register with O as its contents.)

In the case of instructions that use only the contents of the register stored on the second tape,
is, WRITE and LOAD or an arithmetic instruction, these are copied on either the output tape or
accumu1ator tape or the auxiliary tape.

Simulation of a RAM instruction for changing the contents of a register Ri -

tape is a litt1e bit more complicated. In this case .
string ##i#Ci# on the auxiliary tape, then replaces Ci# with the contents of the AC tape,
#, and copies the contents of the auxiliary tape back on to the second memory tape. In
arithmetical instructions, the accumulator tape (with the content of Ro) and
the second operand, are used to perfoml the operation. The result is then used to replace
contents of the accumulator tape.

The ker factor for the complexity analysis is that th~ ~untents 01 tne tapt:s can
than V(s(n)). This immediately implies the space complexity bound. In addition, it
scanning of the second tape can be done in time V(t(n)). ~
a1so require only time proportiona! to the length of the arguments. This provides a time bound
V(t2(n)). In the case of multiplication, an a1gorithm simi1ar to that described in Figure 4.17 can be
used to implement a multiplication in O(t2(n)) time. (Actually the SHIFf instruction has been used
only to locate the next bit of Dne of the arguments in the constant time.) This is easilyimplementable
on a TM. A simi1ar time bound holds for division. This yields in total a V(t3(n)) time estimation for
the simulation of a RAM with logarithmic time complexity t(n). O

We hav,
HowevE
that pro
(which]

Ac(
stored]

instruct
not allo
of these
second

Exercise 4.2.4 Could we perform the simulation shown in the proof ofTheorem 4.2.3 without a specia/

tapeforlC?

4.2.3 Sequentia1 Computation Thesis

Church's thesis concems basic idealized limitations of computing. In this Chapter we present
two quantitative variations of Church's thesis: the sequential computation thesis (also called the
invariance thesis) and the parallel computation thesis. Both deal with the robustness of certain
quantitative aspects of computing: namely, with mutua! simulations of computer models.

Turing machines and RAM are examples of computer models, or computer architectures (in a
modest sense). For a deeper understanding of the merits, potentia!s and applicability of various

