bol (irti
14). This
(In case
5, wherp
1 on thhe
1-tupl s

. At the
uple of
ng cells
eMijs
rourim g
iall the
’se twi

REF &

RANDOM ACCESS MACHIMES 3 2317

i

|_.."-Ii|‘:l_“| the ST I_'[.'!m_DI‘I.l'\-'\.ﬁll_-H [{'Chl'llqul.' as in the !-_l:.“(” 0of :-I'lL"l'le‘I'.I'l 4.1 '“:l. W Can l.!”.llf“ an
analogous result for the space compression

Theorem 4.1.42 (Linear space compression thearem) For any function sin| > nand any real = > () we
kave Spacelsin)) = Space(25(m)

Theorem 4.1.42 allows us to define
PSPACE = |_|Space(n

as the class of all languages that can be decided by MTM with a polvnomial space bound
BEua] ! !

4.2 Random Access Machines

Turing machines are an excellent computer model for studving fundamental problems of computing
However. the architec ture of rLIJ'zlu; machines has Hitle i o ommon with thatof modern Gmputers and
their Programiriing has little in common with Programmung of modlern cComputers The most essential
clumsiness distmgushing a Turine machine from a real sequential computer is that its memory is not
] imnwd:.ﬂl_‘]y accessible. Inorder to read a memory far awav, all intermediate cells also have to be read.
fThis difficulty is bridged by the random access machine model (RAM), introduced and anal
this section, which has turned out to be a simple but adeguate abstraction of sequential o
L of the vor Neumann type. Algorithm design methodelogies for RAM and sequential (omiputers are
basically the same, Complexity analvsis of algorithms and algerithmic problems for RAM reflect and
predict the complexity analysis of programs to solve these problems on typical sequential computers
At the same time, surprisingly, if time and space requirements for RAM are measured properly, there
bare mutually very efficient simulatdons between RAM and Turing machines

421 Basic Model

§ The memory of a RAM (see Figure 4.15a) consists of a data memory and a program memory. The
| data memory is an mfinite random access array of registers R, Ry R each of which can store
a&n arbitrary integer. The register Ry is called the accumulator, and plavs 4 special role The program
L memaory 15 also a random access array of registers [, |

E from the instruction set shown in Figure 4

each capable of storing an instruction
] A15b, A control unit {also called ALLU., for anthmetical
hﬁ"f-il unit | contains bwo special registers, an address counter AC and an instruclon counter i
In addition, there are input and output unts

At the beginning of a computation all data memory and control umit registers are set to {0, and
4 program iz stored in the program memaory. A configuration of a RAM is described by a -tuple
iy, n, o it [owehere 1 i the content of [C, 1 iw are the addresses of the registers used up
to that moment during the computation, and 1y, 1% the current content of the register K

The operand of an instruction is of one of the tollowing three types

= - aconstant |
i = an address, referring lo the register R

I an indirect address; referring to the remster®,, ,

£l R} denotes the contents of the register R, (In Figure 4.15 B, means i, if the operand has the
= 1; Ry means R, ifthe operand is of the farm i R, stands for R, ., if the operand has the form #.)
Computation of o RAM is a sequence of computation steps. Each step leads from one configuration

138 § COMPUTERS

Impul
— : READ operand |inppst — R up 1
Progrm . dita WRITE nperiml [R pp — outpu]
LETNIY r!wmur? LOATD operan Ry —— Rygl
Pal L IR, STORE operand [R,,.: — K --rl:'
ot [e, L ADD aperani (R + Rop =Ryl
Fal | — [IR, SUB operan [Ry - R =Ry
P gl {C | ! R MULT operand (Rh# B i Ryl
a*"l._l,'.- | DIy operand {Ryi R g Ryl
BC L = JUMP label { g0 o label |
| |t % | JZERO labe| : iR 0= U then go o label J
= | JGZERD ahel (i B> 0 then go o label |
HALT
B ACCEPT
l| == REIECT
fal e ()
“u”'.l‘”.':

Figure 415 Random access machine

1o another. In each computational step a RAM executes the instruction currently contained in the ;
program register Py In order to pertorm a nonjump instruction, its operand is stored in AC, §
and through AC the data memory is accessed, if necessary. The READ instruction reads the next
input number; the WRITE instruction writes the next output number, The memaory management
nstructions (LOAD and STORE), arithmetical instructions and conditional jump instructions use the
accumulator K, as one of the registers. The second register, if needed. is specified by the contents of
AC. After a nonjump mnstruction has been performed, the content of 1C is increased by 1, and the same
happens if the test in a jump instruction fails. Otherwise, the label of a jump instruction explicitly
defines the new contents of 1C.

#A computation of a function is naturally defined for a RAM. The arguments have to be provided
at the input, and a convention has to be adopted to determine their number. Either their number is
constant, or the first input integer determines the total number of inputs, or there is some special
number denoting the last input.” Language recognition requires, in addition, an encoding of symbols
11_'.' mtegers.

Figure 4.16 depicts RAM programs to compute two functions: (2)£(n) = 2% forn > 0; (b) F,, - the
nth Fibonacei number. In both cases 1 is given as the only input. Fixed symbolic addresses, like N, i,
Fi_y. Fi, aux and temp, are used in Figure 4.16 to make programs more readable. Comments in curly
brackets serve the same purpose,

The instruction set of a RAM, presented in Figure 4.15, is typical butnot the only one possible. Any
‘usual’ microcomputer operation could be added. However, in order to get relevant com plexity results
in the analysis of RAM programs, sometimes only a subset of the instructions listed in Figure 4.15is
allowed - namely, those without multiplication and division. (It will soon become clear why.) Such
a model is usually called a RAM™ . To this new model the instruction SHIFT, with the semantics
Ry — | Ry /2], is sometimes added

Figure 4.17 shows how a RAM* with the SHIFT operation can be used to multiply two positive
integers x and y to get z = x-y using the ordinary school method. In comments in Figure 4.17 k

“For example, the number 3 can denote the end of a binary vector

RE

La

while 5N
L

[

W

He

body: SL
' sT

LE

M

L

n;

Figure 4.16
1 REA

> 5TD
3: REA
4 510
& SHIL
[:H STC

7. AD]

B Sl

9. JZE

1k L.
Figure 4.17

stands tor t
the algorith
SHIFT oper

If we u
Hme step a
complexity
Tulntl = 00
because jus
out 15 to cC
instruction
one (multif
The second
perform an
of all the nu
needed jor

RANDOM ACCESS MACHINES T 239

= Rl'r“:l
—— |l|.|Ir.|qu
= RI:II
= H.'|||;'
-Ry |
Ryl
=Ryl
=Ryl

wen go o lnbel |

en go 1o label |

tained in the

tored in AC
ads the nex

nanagement
tions use the

contents. of
nd the same
n explicitly

e provided
number 15
ne special
if symbals

1) F, —the
like N, 1,
i curly

ble. Any
v rogulis
t4.15is
) Such
nanhcs

ositive
417k

READ N (N — #] READ N N —n}
LOAD =1 LOAD =]
Jhile: STORE temp [temp e 22"y STORE i ft=1)
LOAD N STORE Fio
|GZERO body [while N > 0 do} STORE F
WRITE pemp while: SUB N
y K HALT [ZERC print [while 1< N do}
. ‘l'r pody: SUB =1 LOAD f
STORE N [N+—N=1} STORE Y
LOAD temp ADD Fily
MULT 0 (Riy o~ temp STORE £ (P —F+Fia)
jLMP while LOAD aux
STORE iy (= Fi}
LOAD I
ADD =1
STORE i
TUMP while
print WRITE F
HALT

(b

. 416 RAM programs to compute (a) fin) = 2"; (b) Fy, the nth Fibonacci number.

11 ADD 1

READ 0o | Ry — X}
v STORE xl [z1—x] 12: STORE A 3 — x-lymod 1)
t READ 0 [Ry—=vw) 13: LOAD =l
STORE w1 (1= /2 4 ADD 1
CHIFT {5 STORE
2t+1) 6 LOAD 42

STORE v {yr—i¥/= |
ADD w2 (Rg—2ly/2*'}) 7. [ZERO 19 [ifly 2 =0}

SemmaREENT

SUB yt (Ra—2ly wonl) = |y 24]) 1§ JUMP 4
JZERD 13 |if thek-th bitof vis {0} 1g: WRITE ~
LOAD - zero at the start) i HALT

417 Integer multiplication on RAMT

s for the number of cycles pertormed to that point. At the beginning k = 0, The basic idea o
1 s added to the rasulting sum. The

algorithm is simple; if the kth right-most bit ot ¥ is 1, then x2
operation 15 used to determineg, USING the instructions numbered 4 to 9, the kth bit.
menasures like those for Turing machines, vhat is, one instruction as one
step and one used register A% ane space unit, the uniform complexity measures, then the
mplexity analysis of the program in Figure 4.16, which computes £im) = 2%, vields the estimations
Ein) = Oln) = O(2"") tor hime and 5, () =0{1) or space Hoth estimations are clearly unrealistic,
eause just to store these nutnbers one needs tme pmpnrﬁunni to their length Q0L Cine way
gt is 1o consider only the rAM® model (with or without the shift instruction). In a RAMT an
ruction can increase the length of the binary representations of the numbers involved at most by
{multiplication can double it), and theretore ihe uniform time complexity measure is realistc.
second more general way outis to consider the logarithmic complexity measures. The time ta
bform an instruction is considered to be equal to the sum af the lengths of the binary representations
Il the numbers involved in the instruction (that s, all operands as well as all addresses) The space
ded for a register is then the maximum length of the binary representations of the numbers stored

p If we use complexity

240 B COMPUTERS

M ; K dhatn
o L ["n [_l—' N -l'l'l'i.':'“rlr_'-
T T 7 W] 1 IR,
+4.q R
i . |

Figure 418 Simulation of a TM on a RAM

in that register during the program execution plus the length of the address of the register
logarithmic space complexitv of a -.'i_1rr1[1ul;.'|'j.|n 15 then the sum of the i .ﬂllrpmn. space ¢ r\n]t‘!.h:nﬂu -
of all the registers involved. With respect £ Programg)
m Figure 4.16a; for fin) = 27, has the Gme <_:_1111]7|;1_':\1L_1. Tiln =02 and the n\!mur:- clsmplmi i
B12"], which corresponds to our intuition. Similarly, for the complexity of the programg

to multiply two s-bit mtegers we Tuln Bin), 5,(n)=81{1), Ti(n E{ni}}
where the subscript u refers to the uniform and the subsc cript | to the logarithmig
measures. In the last example, uniform and logarithmic measures differ by only a polynomial factod
with respect to the length of the input. In the first example the differences are exponential

» these loganthmic complexity measures,

e NN

in Figure 4.17,

NN

.-1{-.--

=Hin

1_-\--\

Mutual Simulations of Random Access and Turing Machines

In spite of the fact that random access machines and Turing machines seem to be very different
computer models, they can simulate each other efficiently
Theorem 4.2.1 A one
simulated by o RAM

i

fape Turing machine A4 of time complexity ((n) and space complexity s(n) can'h

Mt and space complexity Oisin)), and with 8

o unform. fime complextty C{in)

i

garithmi complexity EMm) letin)) and space complexity O sin

Proof: As mentioned in Section 4.1.3, we can assume without loss of J..EE‘T'IL’FE!'.'IE".' that A hasa one-way
infinite tape. Data memory of a RAM~ 1 1s depicted in Figure 4.18. It uses the registets
R, to store the current state of A1 and the register K- to store the current position of the head of Md
Moreover, the contents of the jth cell of the tape of A1 will be stored in the register B, 5, if j = 0

i will have a special subprogram for each instruction of M. This subprogram will simulate
mstruction using the registers K, — R;. During the simulation the instruction LOAD =2, with indirect
addressing, is used to read the same symbol as the head of M. After the simulation of an instruction
of A 15 finished, the main program 15 entered

K simulating A

-
, which uses registers R, and R. to determine whic *
instruchion of A is to be simulated as the next one. The number of operations which 7 needs o :
simulate one mnstruction of A is clearly constant, and the number of registers used is larger than thes
number of cells used by M by only a factor of 2. This gives the uniform complexity time and space
estimations. Thesize of the numbers stored in registers (except in K»}is bounded by a constant, beca
the alphabet of A4 is finite. This vields the bound for the logarithmic space complexity
logarithmic factor for the logarithmic time complexity lg t(n), comes from the fact that the num
representing the head position in the register R; may be as large as #(n)

Nsin

ﬁFun_‘ 4.1%

1t 15 gasy

more compli

Exercise ¢
simulation

The fact

Thearem 4.2
be srmmulated |
and logarithe

Proof: lf a R
then its loga
increase the
machine to |
We show
complexity ¢
of the theore
Mwillh
group of insl
R, separated
second tape
'Iiu- form

wh{"n’ o 15 &

B and ¢ is the

E be simmulated by an MTM in time O (n))

E machine to perform a RAM®* instruction is proportional to

RANDOM ACCESS MACHINES ® 24/

{Eialind

farer ¥ L]] ¥ [} d [} §
[l o T *] &
" " By i
’ 1
nl It s
Ape lape i 1w

Figure 4.19 Simulation of a RAM on a TM

It is easy to see that the same resuit holds for a simulation of MTM on RAM™ , except that slightly
more complicated mapping of k tapes into a sequence of memory registers of a RAM has to be used.

Exercise 4.2.2 Show that the same complexity estimations as in Theorem 4.2.1 can be obtained for the

strtulation of k-tape MTM on RAM

The fact that RAM can be efficiently simulated by Turing machines is more surprising,

Theorem 4.2.3 A RAM™ of untform time complexity t{n) and logarithmic space complexity s(in) < tn) can
il space CNsin)). A RAM or logaritheric time complexity f(n)
and lpgarithrmc space complexiy s(n) can be simulated By an MTM in time Q0 (1)) and space Ofs0i)

Proof: If a RAM" has uniform time complexity t(n) and logarithmic space complexity sin) < tiny,

 then its loganthmic time complexity is O(t(n)sin)} or Q{t=(n)), because each RAM™ instruction can

Increase the length of integers stored in the memory at most by one, and the time needed by a Tunng
e length of the operands.
We show now how a RAM® R with logarithmic time complexity H#n) and logarithmic space

pcomplexity (1) can be simulated by a 7-tape MTM M in time (#(n) . From this the first statement

of the theorem follows

M will have a general program to pre-process and post-process all RAM instructions and a special
Broup of instructions for each RAM instruction. The first read-only input tape coritains the inputs of
R, separated from one angther by the marker #. Each ime a RAM instruction 1s to be simulated, the
pecond tape contains the addresses and contents of all registers of R used by R up to that moment in

H‘Efﬂm
L I T S R = e FEdhly FECE R, i ke

ETe % 15 a marker; 1,1, oy are addresses of registers used until then, stored in binary form;
P is the current contents of the register K , again in binary form. The accumulator tape contains

242 B COMPUTERS

the current contents of the register R;. The AC tape contains the current contents of AC, and the IC
tape the current value of /C. The output tape is used to write the output of R, and the last tape is an
auxiliary working tape (see Figure 4.19).

The simulation of a RAM instruction begins with the updating of AC and IC. A special subprogram
of M is used to search the second tape for the register R has to work with. If the operand of the
instruction has the form ‘= j', then the register is the accumulator. If the operand has the form ‘J’, then
j 1s the current contents of AC, and one scan through the second tape, together with comparison of §
integers i; with the number j written on the AC tape, is enough either to locate j and ¢; on the second
tape or to find out that the register R; has not been used yet. In the second case, the string ###0 is
added at the end of the second tape just before the string ###. In the case of indirect addressing,
“+j", two scans through the second tape are needed. In the first, the register address j is found, and the &
contents of the corresponding register, ¢,, are written on the auxiliary tape. In the second the register ‘
address ¢; 1s found in order to get ¢ . (In the case j or ¢; is not found as a register address, we insert
on the second tape a new register with 0 as its contents.)

In the case of instructions that use only the contents of the register stored on the second tape, that §
1s, WRITE and LOAD or an arithmetic instruction, these are copied on either the output tape or the
accumulator tape or the auxiliary tape.

Simulation of a RAM instruction for changing the contents of a register R; found on the second
tape is a little bit more complicated. In this case M first copies the contents of the second tape after the
string ##1#c;# on the auxiliary tape, then replaces c;# with the contents of the AC tape, appends
#, and copies the contents of the auxiliary tape back on to the second memory tape. In the case of
arithmetical instructions, the accumulator tape (with the content of R) and the auxiliary tape, with
the second operand, are used to perform the operation. The result is then used to replace the old
contents of the accumulator tape.

The key factor for the complexity analysis is that the contents of the tapes can never be larger
than O(s(n)). This immediately implies the space complexity bound. In addition, it implies that the
scanning of the second tape can be done in time O(#(n)). Simulations of an addition and a subtraction 3
also require only time proportional to the length of the arguments. This provides a time bound
O(t*(n)). In the case of multiplication, an algorithm similar to that described in Figure 4.17 can be
used to implement a multiplication in O(t*(n)) time. (Actually the SHIFT instruction has been used
only to locate the next bit of one of the arguments in the constant time.) This is easily implementable
on a TM. A similar time bound holds for division. This yields in total a O(t*(n)) time estimation for
the simulation of a RAM with logarithmic time complexity t(). 0

423 Sequential Computation Thesis ‘ o

Church’s thesis concerns basic idealized limitations of computing. In this chapter we present
two quantitative variations of Church'’s thesis: the sequential computation thesis (also called the
invariance thesis) and the parallel computation thesis. Both deal with the robustness of certain
quantitative aspects of computing: namely, with mutual simulations of computer models.

Turing machines and RAM are examples of computer models, or computer architectures (in a
modest sense). For a deeper understanding of the merits, potentials and applicability of various

Table 4.0

compute

Definiti
ovt’ﬂh’ad

if for eve
for an en
‘needed b
in additi
way to o

As a cor

Theore1
complexi
overhead

We hav
Howewvt
that prc
(which

A
stored)
instruct
not allo
of these
second

—_—

Exer
with

| areu
1

Sin
comple

