124 RELATIONS AMONG COMPI XITY MEASURES 301

the length of the list. Since the list of accessible 1D's has Iength no greater than
d’™ times the length of an 1D, which can be encoded in 1 + k(f(n)+ 1)
symbols, the time is bounded by ¢/™ for some constant c. 0

Theorem 12.11 (Savitch's theorem) 1f L is in NSPACE(S(n)), then L is in
DSPACE(S?(n)) provided S(n) is fully space constructible and S(n) > log, n.

Proof Let L= L(M,), where M, is an $(n) space-bounded nondeterministic TM.
For some constant c, there are at most ¢* 1D's for an input of length n. Thus, if
M, accepts its input, it does so by some sequence of at most ¢*™ moves, since no
ID is repeated in the shortest compwtation of M leading to acceptance.

Let I, 12 I, denote that the ID I, can be reached from I, by a sequence of at
most 2° moves. For i > 1, we can determine if I,}-“- 1, by testing each I to see if
I 1= 1 and 1" £=2 [, Thus the space needed to determine if we can get from
one ID to another in 2 moves is equal to the space needed to record the ID I
currently being tested plus the space needed to determine if we can get from one
ID to another in 2~ ! moves. Observe that the space used to test whether one 1D is
reachable from another in 2'~! moves can be reused for each such test.

The details for testing if w is in L{M) are given in Fig. 12.5. The algorithm of
Fig. 12.5 may be implemented on a Turing machine M, that uses a tape as a stack
of activation recordst for the calls to TEST. Each call has an activation record in
which the values of parameters I,, I,,and i are placed, as well as the value of local
variable I'. As I, I, and I are ID’s with no more than S(n) cells, we can represent
each of them in S(n) space. The input head position in binary uses log n < S(n)
cells. Note that the input tape in all ID’s is fixed and is the same as the input to

begin
let {w| = nand m={log, cl;
let I be the initial 1D of M, with input w;
for each final ID I, of length at most S(n) do
if TEST (Jo, I, mS(n)) then accept;
end;

procedure TEST (14, 1,, i);

ifi=0and (I, =1, or I, |— I,) then return true;

if i > 1 then

for each 1D I’ of length at most S(n) do
if TEST (I, I', i — 1) and TEST (I, I,, i — 1) then
return true;

return false

end TEST

Fig. 12.5 Algorithm to simulate M,

t An “activation record™ is the area used for the data belonging to one call of one procedure.

REE

302 COMPUTATIONAL COMPLEXITY THEORY

M,, so we need not copy the input in each ID. The parameter i can be coded in
binary using at most mS(n) cells. Thus each activation record takes space 0(S(n)).
As the third parameter decreases by one each time TEST is called, the initial
call has i = mS(n), and no call is made when i reaches zero, the maximum number
of activation records on the stack is 0(S(n)). Thus the total space used is 0(S*(n)),
and by Theorem 12.1, we may redesign M, to make the space be exactly S%(n).

Example 12.4
NSPACE(log n) € DSPACE(log? n)

NSPACE(n?) < DSPACE(n*) and NSPACE(2") € DSPACE(4").
Note that for S(n) > n, Savitch's theorem holds even if S(n) is space construc-
tible rather than fully space constructible. M, begins by simulating a TM M that
constructs S(n), on each input of length n, taking the largest amount of space used
as S(n) and using this length to lay out the space for the activation records.
Observe, however, that if we have no way of computing S(n) in even S%(n) space,
then we cannot cycle through all possible values of I, or I’ without getting some
that take 100 much space. ,

125 TRANSLATIONAL LEMMAS AND NONDETERMINISTIC
HIERARCHIES

In Theorems 12.8 and 12.9 we saw that the deterministic space and time hierar-
chies were very dense. It would appear that corresponding hierarchies for non-
deterministic machines would require an increase of a square for space and an
exponential for time, to simulate a nondeterministic machine for diagonalization
purposes. However, a translational argument can be used to give a much denser
hierarchy for nondeterministic machines. We illustrate the technique for space.

A translation L...... -

The first step is to show that containment translates upward. For example, sup-
pose it happened to be true (which it is not) that NSPACE(n’) = N?PACE(n’).
This relation could be translated upward by replacing n by n?, yielding

NSPACE(n®) € NSPACE(n*).

Lemma 122 Let S,(n), S,(n), and f(n) be fully space constructible, with
S>(n} = n and f(n) = n. Then
NSPACE(S, (n)) € NSPACE(S,(n))

nplie:
P NSPACE(S,(f(n))) € NSPACE(S,(f (n))).

